U.S.FOREST SERVICE – NATURAL RESOURCE CONSERVATION SERVICE LARGE WOOD WORKSHOP (September 2023 Craig, Alaska.)

LARGE WOOD STRUCTURE TYPES, CONFIGURATIONS, AND CONSTRUCTION METHODS

able 6-5. I	Recommen	dations for Placement of Large Wood in Streams for A	Aquatic Habitat Benefits	
Stream Size	Width	Large Wood Structure Functions and Risks	Natural Large Wood	
Small	<10	Single or multiple pieces of wood can be effectively used to create habitat, stabilize the channel, dissipate energy, and store sediment. Logs in small streams may be used to create step pools (i.e., plunge pools). Because small streams generally have less energy to move large wood, a greater variety of large wood locations and orientations can be employed without excess risk.	Logs most often lie perpendicular or are angled downstream to flow, but any orientation is feasible. They may span the channel or intrude partway into the channel.	
Medium	10-20	Channel-spanning wood structures may be applicable, but the results are less predictable than for small streams and their vulnerability to flood damage is relatively high.	Wood tends to accumulate in jams, but single pieces and small complexes also occur. The outside of bends and the head of natural gravel bars tend to be relatively stable locations for wood jams.	
Large	>20	Stabilizing woody debris becomes a significant concern on larger streams. Wood placement in the main stem of the channel is only recommended in the form of anchored structures (i.e., log jams, large wood complexes, and wood trapping structures), unless transport can be tolerated. Key pieces and log complexes can be effectively used in side channels and floodplain habitats.	Lateral jams, as opposed to full-spanning jams, are a common feature. As with medium-sized streams, locations at the outside of bends and the head of natural gravel bars tend to be relatively stable.	

Hand Work Wood Construction Methods

Requires minimal design –

- Structure location and type flagged in the field. Plan or typical detail may be required for permitting
- Hydraulic Analysis via Cross section analysis using Mannings Equation
- Use trees much longer than bankfull width for ballasting
- Entanglement is the principal anchorage method. Ballasted with extra wood
- Usable trees should be relatively close to construction site.

Construction

- Trees harvest near site in uplands and on floodplain
- Logs can be skidded longer distances than rootfans
- Root fans can pulled over. If close to the stream away from the bank, part of the roots can be left intact for additional ballast
- Wood moved with grip hoist and timber carriers depending on the size of the stream
- Trees can be cut to a point or wedge and pulled into bank material for partial embedment depending on bank material composition
- Trees are woven together as best as possible to get multi points of contact

 DON'T REMOVE EXISTING TREES THAT STABLIZE THE BANKS!

U

GRF1 Gubernick, Robert -FS, 9/1/2022

Fascine Bank Protection Example

Sturgeon River, Michigan 6 years after construction

Heavy Equipment Large Wood Construction Methods

Requires design –

- Full analysis and modeling for large projects. If only a structure or 2 may use less extensive analysis depending on Permitting requirements
- Tree size is much greater typically
- Requires access construction to mob trees to sites
- Embedment, entanglement, piling, mechanical anchor are the principal anchorage methods

- Construction
- Typically need a large and small excavator to construct LW structures
- Structures can be continuous or discreet structures
- Anchorage methods depends on site configuration
- Key ballast trees are usually embedded with other trees woven together
- May or may not require dewatering

Heavy Equipment Large Wood Construction Methods

Protecting banks during access with logs

Log tongs are mandatory!

If working around bedrock, consider having a hydraulic hammer to remove bedrock knob, gain pool depth, or additional room to place wood when embedding

17

Heavy Equipment Large Wood Construction Methods

- ACCESS RULES OF THUMB
- Access trail should angle downstream toward the stream
- Minimize travel distances up and down stream
- Keep main access corridors toward the edge of floodplain or in the upland and construct short spurs to central location so 2 to 4 or more sites can be serviced by 1 spur trail
- Put access paths to bed when project is complete. Roughen them and place trees across. These trails can be come flow path during high flows

Multiple Apex Log Jams - Lower Harris River, POW Constructed 14 years ago and still functioning as intended preserving islands

Floodplain Wood Examples

Floodplain wood

- 1. Added for floodplain roughness
- 2. Use both root-fan and regular logs
- 3. Typically entangled with existing trees or partially embedded for anchorage
- 4. Opportunistic siting. Need trees to entangle.
- 5. Can be used for shadow structures to protect vegetation

