## Layout, logistics, limitations, equipment types and timing Brian Bair, Watershed Restoration Projects Lead, **USDA** Forest Service Washington Office **Enterprise Program** The primary key to getting things on the ground is the "it" factor. The it factor is the PASSION to leave the earth better than you found it. The PASSION to leave the earth a better place for the next generation. The *PASSION* to be the voice for the creatures who cannot speak. 3 Once upon a time..... | NIMEO Metain and Dathman Calteria | Lower | Bear | Trout | Middle<br>Wind | Dry | Falls | Upper<br>Wind | Panther | |--------------------------------------------------|-------|--------|-------|----------------|-------|-------|---------------|---------| | NMFS Matrix and Pathways Criteria Water Quality | vvina | | | vvina | | | vvina | | | Maximum Water Temperature | 16 | 17 | 25 | 21 | 17 | 16 | 16 | 12 | | Substrate (% fines < 1.6mm) | ND | ND | 11% | 14% | 11% | ND | 15% | 14% | | Turbidity (Max NTU) | 107 | 26 | 46 | 39 | 25 | 4 | 35 | 46 | | Chemical contamination | PF | Habitat Access | | | | | | | | | | Migration barriers Habitat Elements | None | Falls/ | Dam | None | Falls | Falls | Culverts | None | | Substrate (% fines < 1.6mm) | l ND | ND | 11% | 14% | 11% | ND | 15% | 14% | | LWD Pieces/River Mile | ND | ND | 26 | 40 | 55 | 81 | 51 | 78 | | Pools/Mile | ND | ND | 25 | 23 | 31 | 31 | 35 | 56 | | Pool Surface Area/Volume Ratio | ND | ND | 52 | 38 | 49 | 54 | 67 | 46 | | Off channel habitat | ND | ND | 3% | 3% | 7% | 6% | 5% | ND | | % Riparian area within Early Seral | 17% | 9% | 40% | 24% | 16% | 22% | 15% | 15% | | % Riparian Area within Late Seral | 30% | 40% | 27% | 33% | 37% | 34% | 22% | 47% | | Channel Conditions & Dynamics | | • | | | | | | • | | W/D Ratio (Low Flow) | ND | ND | 14 | 11 | 7 | ND | 8 | 7 | | Streambank condition | PF | ND | NPF | NPF | NPF | PF | NPF | FAR | | Floodplain Connectivity | PF | ND | NPF | NPF | FAR | PF | FAR | ND | | Flow/Hydrology & Watershed Conditions | | | | | | | | | | Increased Peakflows | PF | PF | NPF | FAR | PF | FAR | NPF | NPF | | % Watershed in Rain on Snow | 33% | 71% | 85% | 59% | 78% | 70% | 84% | 72% | | ARP | 92 | 95 | 85 | 87 | 94 | 82 | 82 | 85 | | Drainage network Increase | 41% | 12% | 31% | 30% | 10% | 24% | 29% | 23% | | Road density | 2.9 | 1.4 | 2.4 | 2.6 | 1.1 | 1.6 | 2.2 | 2.2 | | Landslide Risk | | | | | | | | | | PF = Properly Functioning | | | | | | | | | | FAR = Functioning at Risk | | | | | | | | | | NPF = Not Properly Functioning | | | | | | | | | | ND = NO DATA | | | | | | | | | | | Restoration<br>Reach Rating | Restoration<br>Watershed Priority<br>Factor | Stream Name | Stream<br>Reach | 6th Field H20shed | 7th Field H20shed | Pool<br>Quality<br>Rating | Low Flow<br>W/D Ratio<br>Rating | LWD<br>Rating | Channel<br>Stability<br>Rating | Riparian<br>Rating | |----------|-----------------------------|---------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|---------------------------|---------------------------------|---------------|--------------------------------|--------------------| | Refuge | 135 | 27 | E EV TROUT CV 0 6 0 0 00 00 | 3 | Trout | Union Tak | 1 | reating | | Kating | | | Reluge | | 27 | E FK TROUT CK, rm 0.6-0.8, 09 92 | | | Upper Trt | | 1 | | | - 1 | | <b>A</b> | 108 | 27 | E FK TROUT CK, rm 0.3-0.6, 09 92 | 2 | Trout<br>Trout | Upper Trt | 0 | 0 | | - | - | | <b>T</b> | 72 | 18 | E FK TROUT CK, rm 0-0.3 09 92<br>FALLS CREEK, rm 2.9-6.0, 09 98 | 4 | Falls | Upper Trt<br>Lower Fils | 1 | 0 | 4 | 4 | - 1 | | | 60 | 20 | PANTHER CK, rm 9.2-10.0, 09 94 | 7 | Panther | Lower Pnt | + | 0 | 0 | - 1 | 1 | | | 56 | 14 | 12 MILE CK, rm 0.0-0.5, 09 94 | 1 | Panther | Upper Pnt | 0 | 1 | 1 | 1 | 1 | | | 54 | 18 | FALLS CREEK, rm 1.6-2.9, 09 98 | 3 | Falls | Lower Fils | 1 | -1 | - 1 | - 1 | - 1 | | | 48 | 24 | COMPASS CREEK, rm 1.7-2.1, 09 93 | 3 | Trout | Crtr/Cmps | 1 | 1 | -1 | 0 | - 1 | | | 27 | 9 | PARADISE CK, rm 1.0-2.3, 09 93 | 2 | Upper Wind | Paradise | 1 | 0 | 0 | 1 | 1 | | | 27 | 27 | E FK TROUT CK, rm 0.8-0.8, 09 92 | 4 | Trout | Upper Trt | | | -1 | - 1 | - 1 | | | 26 | 26 | SF PLANTING CK 09 92 | 2 | Trout | Lower Trt | 1 | 1 | -1 | 0 | 0 | | | 24 | 24 | CRATER CREEK, rm 1.5-1.8, 09 93 | 2 | Trout | Crtr/Cmps | 1 | 1 | 0 | 0 | -1 | | | 24 | 24 | COMPASS CREEK, rm 1.1-1.7, 09 93 | 2 | Trout | Crtr/Cmps | - 1 | 0 | -1 | 0 | 1 | | | 21 | 21 | DRY CREEK, rm 3.4-3.8, 09 92 | 2 | Drv | Dry Cr | 1 | 0 | 0 | 0 | 0 | | | 20 | 20 | PANTHER CK, rm 5.7-6.3, 09 94 | 3 | Panther | Lower Pnt | - 1 | -1 | -1 | - 1 | - 1 | | | 20 | 20 | PANTHER CK, rm 6.3-6.9, 09 94 | 4 | Panther | Lower Pnt | 1 | 0 | -1 | 0 | - 1 | | | 20 | 20 | PANTHER CK, rm 7.7-9.2, 09 94 | 6 | Panther | Lower Pnt | 1 | 0 | 0 | -1 | - 1 | | | 18 | 18 | FALLS CREEK, rm 0.6-1.6, 09 98 | 2 | Falls | Lower Fils | - 1 | -1 | -1 | - 1 | - 1 | | | 16 | 16 | UPPER WIND R, rm 27.9-28.5, 09 91 | 4 | Upper Wind | Hdwtrs Wind | | | 1 | - 1 | - 1 | | | 16 | 16 | UPPER WIND R, rm 25.3-27.0, 09 91 | 2 | Upper Wind | Hdwtrs Wind | | | 1 | - 1 | - 1 | | | 16 | 16 | UPPER WIND R, rm 27.4-28.4, 07 96 | 3 | Upper Wind | Hdwtrs Wind | 0 | 0 | 0 | 0 | - 1 | | | 14 | 14 | 10 MILE, rm 0.0-0.8, 09 94 | 1 | Panther | Upper Pnt | 0 | 0 | -1 | - 1 | - 1 | | | Active | 10 | PETES G. CH ( K | Company and a co | Inner Wind | Pete's | | | 1 | | • | #### **GOALS AND OBJECTIVES** The specific goals and objectives for the 2023 Zig Zag Floodplain Restoration Project are as follows: Goal 1. Restore and maximize natural production of, Chinook and coho salmon, steelhead and cutthroat trout within Still Creek. Restore and maximize salmonid productivity within the Zig Zag River by restoring stream channels, floodplains and off-channel aquatic habitat complexity to exceed standards required for optimizing salmonid population production. Goal 2. Restore Channel Hydrology and Reconnect Stream Channels to Associated Floodplains. Reconnect stream channels to floodplains to allow for natural and frequent inundation to reduce high flow energy impacts to stream channels and aquatic habitat. Objective 2A. Remove levees to decrease entrenchment ratios (Flood prone width/bankfull width) from 1:1 to greater than 3:1 (RM 1.5 – 2.1). Decreasing the entrenchment ratio will restore floodplain connectivity and allow natural flood flow inundation reducing impacts to stream channels and aquatic habitat. Objective 2B. Increase the floodplain inundation acreages from 15 acres to greater than 24 acres. Increasing inundation acreages will maximize off-channel aquatic habitat and increase salmonid productivity. Objective 2C. Reactivate 2,236 feet of historic side channels. Reactivating side channels will provide coho and Chinook with vital off-channel habitat and reduce main stem stream channel and aquatic habitat impacts. 9 ### **Risk Assessment** During the initial site visit this should be foremost on you mind; What is the land ownership above, below and within the project area? Where is the infrastructure? Are there utilities, high voltage power lines, bridges, homes, campgrounds or buildings within or downstream? Water recreation? Rafting, boating or inter-tubing? Restoration NEPA should cover all these aspects however often one or more of the above get overlooked. *You cannot ignore or overlook these aspects in your designs, logistics and implementation.* | | | Potential | sks, causes and effects of | Risk<br>Priority #,<br>(1-10; 1 = | | |---------------------------------|-----------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------| | Treatment | Potential Failure<br>Mode | Effects of<br>Failure | Potential Causes<br>or Mechanisms | low, 10 =<br>high) | Design Checks | | Formidable<br>Multi-<br>faceted | Burial by<br>incoming<br>sediment | Project not effective | Insufficient design considerations | 3 | Allowable shear<br>stress check | | Structures | Rapid lateral<br>migration | Property or<br>infrastructure<br>damage | Improper design specifications | 5 | Design experience | | | Erosion of opposite bank | Minimal, some<br>sediment input | Improper design,<br>placement or<br>alignment | 2 | Design experience | | | Structure<br>displacement | Minimal, reduce<br>design<br>effectiveness | Improper material<br>sizing, or design | 3 | Use largest cost-<br>effective materials | | | Excessive<br>scouring of bed-<br>BF channel<br>shear 1.71 lb/sq<br>ft | Potential to cause structure failure | Improper design | 7 | Follow design<br>guidelines for<br>structures, scour/<br>shear stress check | | Gravel Bar<br>and Point<br>Bar | Burial by incoming sediment | Minimal | Insufficient design<br>capacity | 3 | Allowable shear stress check | | Structures | Rapid lateral<br>migration | Property or<br>infrastructure<br>damage | Improper design,<br>placement or<br>alignment | 5 | Design experience | | | Erosion of opposite bank | Minimal, some<br>sediment input | Improper design,<br>placement or<br>alignment | 2 | Design experience | | | Structure<br>displacement | Potential to<br>cause structure<br>failure | Improper design | 3 | Follow design<br>guidelines for<br>structures | | 600 | | | LICEL | 1 Project Nam | e: | | 2 Location: | | | | | 1 | | |---------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------|----------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------------|------------------------|----------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|--| | U.S | Risk Assess ment Works beet | | USDA | | Resurrection Creek Restoration | | | Ne | ar Hope, A | λK | Insert New Row | | | | 3. Specific Objective:<br>Resurrection Creek Restora | | | | | life of Preparer:<br>Brian Bair | | S. Date Prepa | Frida | y, March 17, 2 | | Delete Selected Row | | | | <ol> <li>Risk Decision Authority: 1<br/>Signature:</li> </ol> | the risk decision authority blo | ck should be sig | gned by your G | roup Supervisor<br>Title: | if the Residual Risk, Block 15, has a RAC of "High" or the E | P Director, or D | osignee, when<br>Date: | the RAC value | s "Extremely High | * | Sort Risk Assessment by Risk | | | | | /s/Thomas Brian Bair | | | | Watershed Restoration Projects Lead | | | | 5/6-8/12/2023<br>T | | Sort Risk Assessment by Task | | | | Identify | Hazards | As | sess Haza | rds | Risk Control Options | R | esidual Ri | sk | Decision | Implement | Create Specific Risk Assessment | | | | 7. Task | 8.Hazard | 9Harard<br>Probability | 10. Severity | 11. RAC | 12. Identify hazard mitigations & measures | 13. Hazard<br>Probability | 14.Severity | 15.RAC | 16. Task<br>Necessary? | 17. Hanard Control<br>Assigned to: | Create Specific Risk Assessment Create New Project RA | rosa | | | Log Jams | Boating, Intertubing, water recreation | Possible | Ortical | High | NO CROSS CHANNEL STRUCTURES. Emulate natural<br>log jams, locate on downstream and of bends, regionly of<br>woop parallel for the flow. This reach is mostly pack rat<br>access with use rade at low. Rating companies and<br>guides with begine a tour priors to seattle of enri with<br>any significant concerns imediately addressed. | Unlikely | Critical | Mode na fe | YES | Construction<br>NanagerProject Engr. | Follow guidelines | for structures. Conduct floating dummy test | | | Log Jam's | Catostrophic Failure (Leaves<br>Project Area) | Unikely | Moderate | Low | Greater has 10% of the LVP structure will be hursed and<br>instruction consistent with designs. MEC DO modeling has<br>exclusion devotates all sits get structure pitcement sites. All<br>get official LVP accesses of the construction of the<br>get of the long structure of the construction of the<br>The Research was all one (2000 selection in additional con-<br>traction of the long structure of the long structure of<br>present means and confidence of the long structure of<br>present means and confidence of the long structure is also<br>the Tamagain and from the Confidence feature of<br>long structure is considered to be a very low rate to the<br>draphs; it was proposed. | Untikely | libderate | tow | YES | Construction<br>Alexage::Project Engr. | | for structures, scour! sheep stress check | | | Log Jams | Structure Burial or<br>abandorment | Rare | Negripible | Low | No threat to life or property. Potential loss of habitat. | Rare | Negligbie | Low | YES | Everyone | A | foveble shear stress check | | | Restoration to planners alon | Not seen by operator, head injuries, death by crushing or impact by equipment | Possible | Oritical | High | A. A) person shall that contact the COPI of orders<br>because the public sensitive to pa class.<br>Correct set primary or sear multi, when in coles presently<br>contact set primary or sear multi, when in coles presently<br>to COPI of a contact public sensitive to the contact public<br>COPI of a contact public sensitive to the contact public<br>COPI of a contact public sensitive to the contact public<br>contact public sensitive to the contact public<br>contact a character sensitive to the contact public<br>contact a character sensitive to the contact public<br>character contact<br>character sensitive to the contact<br>contact<br>character sensitive to the contact<br>character sensitive to the contact<br>character sensitive to the contact<br>character sensitive to the contact<br>character sensitive to the contact<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>character<br>c | Possible | libdeate | Mode mile | YES | Project Hanager and<br>Everyone | All ground personnes are to check in with | nie Comiciani Garge – Praged Bigheer selve einning te<br>ceneraction aus | | | Water Safety | Falling while crossing creeks,<br>streams, and rivers; injuries<br>and/or drowning | Possible | Moderate | M oderate | When crossing bodies of water, to aware of sirpoey surfaces, rocks, por, moss, etc. Gauge steam swiftens and dept before attempting to cross; never enter fast-moving water male that perpendies the sweeping of their water persons and state to person and the sweeping of their water persons and their sweeping of their water persons and their specific spec | Unlikely | libderate | Low | YES | Eleryone | | и в выри сою б окручев С, реал Гем изе элоре. | | | Tree Harvest and Tree<br>Marking | falling snags and limbs | Unikely | Ortical | M oderate | Be alort to snags in work area. A fold walking or<br>standingstilling under snags. We are cetff delicurent hand has<br>all it times. Communicate engineers snags this to others.<br>Get out of woods during high-wind events. Be extra vigitant<br>when wind analor dead timber is present. Keep aware of<br>changing weather conditions. | Rare | Abderate | Low | YES | Eleryone | There is a lot of beetle kill on the terms | ees but 90% of the werk is on open ground/ no overhead hezards: | | | Log Jams | Boating, intertabling, water moreation | Posable | Critical | High | NO CROSS CHANNEL STRUCTURES. This reach is used<br>by pack or fater and some kayakers. Use is made allow (2<br>to busiles per yeal). Midgaton Emulate natural (a) jams, locate on<br>downstream end offends, reaprily of wood parallel to the<br>flow. Rating companies and guides will be given a tour<br>prior to beasson of work with any significant concerns<br>immediately addressed. | Uhlikely | Critical | Modera te | YES | Construction<br>Manager/Project Engr. | Follow guidelines for abuctives. Conduct floating dum my lest. | |----------|----------------------------------------|---------|----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------|--------|---------------------------------------|----------------------------------------------------------------| | | NO CROSS<br>boaters pe | | | <u>STRU</u> | CTURES. This reach is | used | by pac | ck raft | ers an | d some kay | yakers. Use is rated as low (2-6 | | | _ | mpani | ies an | d guid | | | | | | | y of wood parallel to the flow.<br>ny significant concerns | Greater than 50% of the LW structures will be buried and ballasted consistent with engineering design criteria. HEC 2D modeling has evaluated velocities at all log structure placement sites. All significant LW structures will be constructed with Construction Manager and or Project Engineer oversite. The Resurrection Creek bridge is 3.2 miles downstream however is well above Q200 elevation. In addition, downstream of the project site is the alluvial fan containing greater than 300 pieces of LW per RM. Downstream of the fan is the Turnagain Arm of Cook Inlet. Catastrophic failure of log structures is a very low risk to the bridge, life and property downstream of the project area. # Harvest Where? Riparian areas? Off Site? Methods Push- Pull? Cut? Salvage? --- ## SF Skokomish Rehabilitation Project 65 Because this is a big river ~6,000-8,000 cfs bankfull...(flood prone widths >600m) the floodplain and gravel bar structures were critical and needed to work in concert with the FMFs. On average gravel bar heights increased 2.4 feet through the project reach. Max accumulation height was 6.6 feet 71 ## Conclusions - Gravel bars increased 2.4 feet on average throughout the project area - The thalweg decreased on average -2.0 feet. - Estimated sediment storage volume accumulated by the bar structures (bar deposition - thalweg scour) is 43,000 yd^3 or 9yd^3 for every linear foot of stream. So instead of producing 8,000 cy/year the project area is now storing - As a consequence of the bar deposition and thalweg scour the channel forming ~ bankfull width / depth ratios decreased 49% and low flow w/d decreased 36% - Pools greater than 5' residual pool depth doubled from 3 to 6 within the project reach. - As far as durability goes this years flow was the 9th highest on record and we did not loose a stick. We did accumulate a lot of wood and even snagged an old growth tree. ### THE RIVER ALWAYS WINS! When you see something that's working, measure it, try to understand what is creating it, and try to replicate it. When you try you will sometimes fail. But when you fail you learn. When you learn, you will succeed. 73